Indica
Backed by cutting edge technology, an uncompromising focus on ease-of-use and dedicated customer service, Indica Labs’ software and services are being used to make vital discoveries in pathology labs and research organizations around the world.

T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma

Indica Labs / Publications  / T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma

T-cell Localization, Activation, and Clonal Expansion in Human Pancreatic Ductal Adenocarcinoma

Ingunn M. StromnesAyaka HulbertRobert H. PiercePhilip D. Greenberg and Sunil R. Hingorani

Cancer Immunology Research , 2017
DOI: 10.1158/2326-6066.CIR-16-0322

Abstract

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to most therapies, including immune checkpoint blockade. To elucidate mechanisms of immunotherapy resistance, we assessed immune parameters in resected human PDA. We demonstrate significant interpatient variability in T-cell number, localization, and phenotype. CD8+ T cells, Foxp3+ regulatory T cells, and PD-1+ and PD-L1+ cells were preferentially enriched in tertiary lymphoid structures that were found in most tumors compared with stroma and tumor cell nests. Tumors containing more CD8+ T cells also had increased granulocytes, CD163+ (M2 immunosuppressive phenotype) macrophages, and FOXP3+ regulatory T cells. PD-L1 was rare on tumor cells, but was expressed by CD163+macrophages and an additional stromal cell subset commonly found clustered together adjacent to tumor epithelium. The majority of tumoral CD8+ T cells did not express molecules suggestive of recent T-cell receptor (TCR) signaling. However, 41BB+PD-1+ T cells were still significantly enriched in tumors compared with circulation. Tumoral CD8+PD-1+ T cells commonly expressed additional inhibitory receptors, yet were mostly T-BEThi and EOMESlo, consistent with a less terminally exhausted state. Analysis of gene expression and rearranged TCR genes by deep sequencing suggested most patients have a limited tumor-reactive T-cell response. Multiplex immunohistochemistry revealed variable T-cell infiltration based on abundance and location, which may result in different mechanisms of immunotherapy resistance. Overall, the data support the need for therapies that either induce endogenous, or provide engineered, tumor-specific T-cell responses, and concurrently relieve suppressive mechanisms operative at the tumor site. Cancer Immunol Res; 5(11); 1–14. ©2017 AACR.

Click here to access full article.